Acta Crystallographica Section B

Structural

Science
ISSN 0108-7681

Karolina Schwendtner* and Uwe Kolitsch

Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria

Correspondence e-mail:
karolina.schwendtner@univie.ac.at

[^0]
Octahedral As in \mathbf{M}^{+}arsenates - architecture and seven new members

Arsenates with arsenic in octahedral coordination are very rare. The present paper provides an overview of all known M^{+} arsenates (V) containing octahedrally coordinated arsenic $\left(M^{+}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Ag}\right)$ and the crystal structures (determined from single-crystal X-ray diffraction data) of the following seven new hydrothermally synthesized members belonging to six different structure types, four of which are novel: $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}, \mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}, \mathrm{NaHAs}_{2} \mathrm{O}_{6}$-type $\mathrm{KHAs}_{2} \mathrm{O}_{6}$, $\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ and isotypic $\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}, \mathrm{CsAs}_{3} \mathrm{O}_{8}$ and $\mathrm{NaH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$-type $\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$. The main building unit of these compounds is usually an $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster of two edgesharing AsO_{6} octahedra sharing two apical corners each with two AsO_{4} tetrahedra. The different connectivity between these clusters defines the different structure types. The novel $\mathrm{CsAs}_{3} \mathrm{O}_{8}$ structure, based on a derivative of the $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster, is the most condensed of all these M^{+}arsenates, with an $\mathrm{O} /$ As ratio of only 2.67 compared with values of 2.75-3.5 for the remaining members. This is achieved through polymerization of the cluster derivatives to infinite chains of edge-sharing AsO_{6} octahedra. The ${ }^{[4]} \mathrm{As} /{ }^{[6]} \mathrm{As}$ ratio drops to only 0.5 . All but two of the protonated title compounds show protonated AsO_{6} octahedra. Hydrogen bonds range from very strong to weak. An analysis of bond-length distribution and average bond lengths in AsO_{6} octahedra in inorganic compounds leads to an overall mean As-O distance for all known AsO_{6} octahedra (with R factors <0.072) of 1.830 (2) \AA.

1. Introduction

Extensive studies of the system $M^{+}-M^{3+}-\mathrm{As}-\mathrm{O}-\mathrm{H}\left(M^{+}=\right.$ $\left.\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Ag}, \mathrm{Tl}, \mathrm{NH}_{4} ; M^{3+}=\mathrm{Al}, \mathrm{Ga}, \mathrm{In}, \mathrm{Sc}, \mathrm{Cr}, \mathrm{Fe}\right)$ have yielded a large number of new $M^{+}-M^{3+}$ arsenates(V) (Kolitsch, 2004; Kolitsch \& Schwendtner, 2004, 2005; Schwendtner \& Kolitsch, 2004a,b, 2005a,b,c, 2007a,b; Baran et al., 2006a,b; Schwendtner, 2006; Schwendtner et al., 2006a,b,c), which were characterized structurally but also by spectroscopic and thermoanalytical techniques. As by-products in some of these studies six novel M^{+}arsenates (V) were obtained that all contain arsenic in both octahedral and tetrahedral coordination. It is our aim to structurally characterize these materials and have a closer look at AsO_{6} units in M^{+}arsenates in general. A large number of $M^{+} \operatorname{arsenates}(\mathrm{V})$ is known, demonstrated by 53 entries in the Inorganic Crystal Structure Database (ICSD, Version 2006-1), most of them featuring arsenic in tetrahedral coordination. All of the $15\left(\mathrm{NH}_{4}\right)$ arsenates in the database contain only tetrahedrally coordinated arsenic, as do ten out of 13 Na arsenates; these two systems seem to have been studied most extensively. Two of seven Ag arsenates contain AsO_{6} octahedra, as does one of

Received 12 July 2006
Accepted 18 December 2006

Table 1
Unit-cell parameters of all known M^{+}arsenates containing As in octahedral coordination.

Formula	Space group	$a(\AA)$	$b(\AA)$	$c(\AA)$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	$V\left(\AA^{3}\right)$	Z
$\mathrm{LiAsOO}_{3}{ }^{\text {a }}$	$R \overline{3}$	4.808 (3)	4.808 (3)	14.21 (2)	90.00	90.00	120.00	284.48	6
$\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}{ }^{\text {b }}$	$P 2_{1} / n$	9.666 (2)	8.553 (2)	9.970 (2)	90.00	117.86 (3)	90.00	728.7 (3)	4
$\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}{ }^{\text {b }}$	C2/m	11.456 (2)	9.133 (2)	5.630 (1)	90.00	115.56 (3)	90.00	531.4 (2)	4
$\mathrm{Na}_{2} \mathrm{As}_{4} \mathrm{O}_{11}{ }^{\text {c }}$	C2/c	9.049 (3)	8.287 (3)	11.508 (5)	90.00	102.74 (4)	90.00	842 (2)	4
$\mathrm{Na}_{7} \mathrm{As}_{11} \mathrm{O}_{31}{ }^{\text {d }}$	$P \overline{3} m 1$	11.199 (3)	11.199 (3)	5.411 (2)	90.00	90.00	120.00	587.80 (3)	1
$\mathrm{NaHAs} 2_{2} \mathrm{O}_{6}{ }^{\text {e }}$	$P 2{ }_{1} / c$	5.829 (1)	9.154 (1)	8.989 (1)	90.00	93.29 (1)	90.00	478.85	4
$\mathrm{NaH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}{ }^{f}$	$P \overline{1}$	7.167 (1)	7.575 (1)	7.850 (1)	109.89 (1)	107.27 (1)	106.15 (1)	346.9	2
$\mathrm{Na}_{3} \mathrm{H}_{5} \mathrm{As}_{4} \mathrm{O}_{14}{ }^{\text {g }}$	Pnna	10.038 (1)	11.692 (2)	9.533 (1)	90.00	90.00	90.00	1118.83	4
$\mathrm{KHAs}_{2} \mathrm{O}_{6}{ }^{\text {b }}$	$P 2{ }_{1} / c$	6.051 (1)	9.727 (2)	9.054 (2)	90.00	94.21 (3)	90.00	531.46 (18)	4
$\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}{ }^{\text {b }}$	$P \overline{1}$	5.154 (1)	6.967 (1)	7.532 (2)	63.90 (3)	78.61 (3)	84.35 (3)	238.08 (11)	1
$\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}{ }^{\text {b }}$	$P \overline{1}$	5.169 (1)	7.036 (1)	7.766 (2)	63.31 (3)	79.87 (3)	84.38 (3)	248.36 (11)	1
$\mathrm{CsAs}_{3} \mathrm{O}_{8}{ }^{\text {b }}$	C2/c	8.515 (2)	11.690 (2)	7.595 (2)	90.00	112.70 (3)	90.00	697.5 (3)	4
$\mathrm{AgAsO}_{3}{ }^{\text {b }}$	$\mathrm{Pca}_{1}{ }_{1}$	19.488 (3)	6.600 (1)	12.661 (3)	90.00	90.00	90.00	1628.47	24
$\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}{ }^{\text {b }}$	$P \overline{1}$	7.162 (1)	7.678 (2)	7.880 (2)	110.72 (3)	106.47 (3)	105.43 (3)	354.8 (2)	2
$\mathrm{Ag}_{4} \mathrm{H}_{4} \mathrm{As}_{4} \mathrm{O}_{14}{ }^{i}$	$P 2_{1} / n$	7.839 (5)	12.428 (5)	6.556 (2)	90.00	109.30 (2)	90.00	602.81	2

References: (a) Driss \& Jouini (1989a); (b) this work; (c) Driss, Jouini \& Omezzine (1988); (d) Guesmi et al. (2006); (e) Nguyen Huy \& Jouini (1978); (f) Driss, Jouini, Durif \& AverbuchPouchot (1988); (g) Driss \& Jouini (1989b); (h) Curda et al., 2004); (i) Boudjada \& Averbuch-Pouchot (1984).
the six Li compounds, but none of all six K arsenates. None of the three Tl compounds, the two Cs compounds and the single Rb arsenate contain AsO_{6} octahedra. It is interesting to note that octahedrally coordinated arsenic is never encountered together with $\mathrm{H}_{2} \mathrm{O}$ in any of these structures. Altogether, there are only seven out of 53 entries featuring the rather rare octahedral coordination of arsenic. An overall analysis of all AsO_{4} and AsO_{6} polyhedra in structures included in the ICSD leads to the conclusion that only ca 3% of all As^{V}-containing structures feature the AsO_{6} polyhedra (Schwendtner, 2007). To our knowledge an analysis and discussion of bond-length distribution and average bond lengths of AsO_{6} groups has never been conducted - probably due to the meagre amount of data. Therefore, a bond-length analysis of all AsO_{6} bond lengths available in the ICSD was conducted.

The present paper describes the crystal structures of seven new $\mathrm{Li}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$ and Ag arsenates containing arsenic in octahedral coordination, and provides an overview on the topology and connectivity of all M^{+}arsenates containing AsO_{6} octahedra (Table 1).

2. Experimental

2.1. Syntheses

Six of the seven new compounds were initially synthesized by chance as by-products during the syntheses of $M^{+}-M^{3+}$ arsenates. Five of these seven compounds were later also obtained in relatively large percentages from M^{+}-As mixtures (see below). All syntheses were undertaken under hydrothermal conditions in Teflon-lined stainless steel autoclaves at 493 K under autogeneous pressure. The Teflon vessels were filled to $c a 30-50 \%$ of their inner volume and were then heated to 493 K , kept at this temperature for 7 d , and slowly cooled to room temperature overnight. Powders of $M^{+} \mathrm{CO}_{3}$ (purities $>99,99.5,99.7,99.9 \%$ for $M^{+}=\mathrm{Li}, \mathrm{K}, \mathrm{Ag}$, and Rb, Cs, respectively), crystalline arsenic acid $\left(\mathrm{H}_{3} \mathrm{AsO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right.$, purity $>99.9 \%$) and (initially) $M_{2}^{3+} \mathrm{O}_{3} / \mathrm{Cr}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ were used as starting reagents. We point out that all of the crystals were
grown without any added water. Four of the seven compounds could be grown from synthesis batches containing either $M_{2}^{+} \mathrm{CO}_{3}, M_{2}^{3+} \mathrm{O}_{3}$ and arsenic acid or $M_{2}^{+} \mathrm{CO}_{3}$ and arsenic acid only. Two compounds formed only as by-products during the synthesis of $M^{+}-M^{3+}$ arsenates, while one compound was only obtained by direct synthesis from $M_{2}^{+} \mathrm{CO}_{3}$ and arsenic acid.

Colourless to white rhombic crystals of $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ appeared repeatedly in different dry synthesis batches of $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{In}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{AsO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (volume ratio ca $2: 1: 6$). The yield of the hygroscopic crystals was ca 90%. The same crystals were also obtained from similar mixtures with different M^{3+} cations ($\mathrm{Cr}, \mathrm{Fe}, \mathrm{Sc}$). Small crystals of $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ (yield $c a 40 \%$, accompanied by 60% of amorphous unidentified material) were also grown from a mixture of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and arsenic acid (volume ratio ca $1: 3$) and from the same starting reagents (volume ratio ca 1:2), this time accompanied by crystals of LiAsO_{3} (Driss \& Jouini, 1989a).

Block, whitish crystals of $\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$ were found in a dry mixture of $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{In}_{2} \mathrm{O}_{3}$ and arsenic acid (volume ratio ca 4:1:5); yield about 50%. The crystals were accompanied by colourless hexagonal platelets of LiAsO_{3} (Driss \& Jouini, 1989a) and colourless mica-like twinned rosettes of a compound with an up-to-now unsolved structure. $\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$ was also obtained from a mixture of $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and arsenic acid; in this case the crystals were accompanied by those of $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$. Efforts to synthesize these crystals from synthesis batches free of M^{3+} cations have failed so far. Such attempts have led to the formation of $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ accompanied by LiAsO_{3} (Driss \& Jouini, 1989a).
$\mathrm{KHAs}_{2} \mathrm{O}_{6}$ formed colourless, translucent, thin tabular crystals from a dry mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and arsenic acid (volume ratio ca 2:1:4). Syntheses using $\mathrm{Cr}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ rather than $\mathrm{Al}_{2} \mathrm{O}_{3}$ lead to the same result. The same material could also be grown nearly phase-pure (yield ca 98%) from a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and arsenic acid (volume ratio ca 1:4).
$\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ was obtained from synthesis batches containing $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Ga}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{AsO}_{4}$ (volume ratio ca 2:1:8), and in the equivalent $\mathrm{Fe}_{2} \mathrm{O}_{3}$-bearing mixture. Similarly, the isotypic

Table 2
Crystal data, data collection information and refinement details for the title compounds.

	$\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$	$\mathrm{KHAs}_{2} \mathrm{O}_{6}$	$\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$	$\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$
Crystal data				
Chemical formula	$\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$	$\mathrm{KHAs}_{2} \mathrm{O}_{6}$	$\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$	$\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$
M_{r}	533.80	285.95	580.17	377.72
Cell setting, space group	Triclinic, $P \overline{1}$	Monoclinic, $P 2{ }_{1} / \mathrm{c}$	Triclinic, $P \overline{1}$	Monoclinic, $P 2{ }_{1} / n$
Temperature (K)	293 (2)	293 (2)	293 (2)	293 (2)
$a, b, c(\AA)$	5.154 (1), 6.967 (1), 7.532 (2)	6.051 (1), 9.727 (2), 9.054 (2)	5.169 (1), 7.036 (1), 7.766 (2)	9.666 (2), 8.553 (2), 9.970 (2)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	63.90 (3), 78.61 (3), 84.35 (3)	90.0, 94.21 (3), 90.0	63.31 (3), 79.87 (3), 84.38 (3)	90.0, 117.86 (3), 90.0
$V\left(\AA^{3}\right)$	238.08 (11)	531.46 (18)	248.36 (11)	728.7 (3)
Z	1	4	1	4
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	3.724	3.574	3.879	3.443
Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	14.42	13.31	18.27	13.70
Crystal form, colour	Tabular, colourless	Tabular-rhombic, colourless	Tabular, colourless	Large plate, colourless
Crystal size (mm)	$0.04 \times 0.03 \times 0.02$	$0.12 \times 0.10 \times 0.08$	$0.17 \times 0.13 \times 0.05$	$0.15 \times 0.08 \times 0.08$
Data collection				
Diffractometer	NoniusKappaCCD	NoniusKappaCCD	NoniusKappaCCD	NoniusKappaCCD
Data collection method	φ and ω scans			
Absorption correction	Multi-scan (based on symmetry-related measurements)			
$T_{\text {min }}$	0.596	0.298	0.147	0.233
$T_{\text {max }}$	0.761	0.416	0.462	0.407
No. of measured, independent and observed reflections	2699, 1385, 1188	3747, 1922, 1785	4335, 2190, 1995	5128, 2642, 2426
Criterion for observed reflections	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$
$R_{\text {int }}$	0.018	0.011	0.026	0.012
$\theta_{\text {max }}\left({ }^{\circ}\right)$	30.0	32.6	35.0	32.5
Refinement				
Refinement on	F^{2}	F^{2}	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.056, 1.12	0.017, 0.043, 1.12	0.028, 0.077, 1.04	0.017, 0.041, 1.13
No. of reflections	1385	1922	2190	2642
No. of parameters	88	87	88	127
H -atom treatment	Mixture of independent and constrained refinement	Refined independently	Mixture of independent and constrained refinement	Mixture of independent and constrained refinement
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0232 P)^{2}+\right. \\ & 0.3298 P], \text { where } P=\left(F_{o}^{2}+\right. \\ & \left.2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0205 P)^{2}+\right. \\ & 0.3321 P], \text { where } P=\left(F_{o}^{2}+\right. \\ & \left.2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0495 P)^{2}+\right. \\ & 0.1743 P], \text { where } P=\left(F_{o}^{2}+\right. \\ & \left.2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0175 P)^{2}+\right. \\ & 0.613 P] \text {, where } P=\left(F_{o}^{2}+\right. \\ & \left.2 F_{c}^{2}\right) / 3 \end{aligned}$
$(\Delta / \sigma)_{\text {max }}$	0.0001	0.001	<0.0001	0.001
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.16, -0.69	0.71, -0.77	1.37, -1.59	0.67, -0.86
Extinction method	SHELXL97	SHELXL97	SHELXL97	SHELXL97
Extinction coefficient	0.0088 (14)	0.0092 (5)	0.059 (3)	0.0087 (3)
	$\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$	$\mathrm{CsAs}_{3} \mathrm{O}_{8}$	AgH_{2}	$\mathrm{s}_{3} \mathrm{O}_{9}$
Crystal data				
Chemical formula	$\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$	$\mathrm{CsAs}_{3} \mathrm{O}_{8}$	AgH_{2}	$\mathrm{s}_{3} \mathrm{O}_{9}$
M_{r}	271.80	485.67	478.6	
Cell setting, space group	Monoclinic, $\mathrm{C} 2 / \mathrm{m}$	Monoclinic,	/c Tricli	c, $P \overline{1}$
Temperature (K)	293 (2)	293 (2)	293	
$a, b, c(\AA)$	11.456 (2), 9.133 (2), 5.	630 (1) 8.515 (2), 11.6	0 (2), 7.595 (2) 7.162	1), 7.678 (2), 7.880 (2)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90.0, 115.56 (3), 90.0	$90.0,112.70$, $90.0 \quad 110.72$	(3), 106.47 (3), 105.43 (3)
$V\left(\mathrm{~A}^{3}\right)$	531.4 (2)	697.5 (3)	354.8	
Z	4	4	2	
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	3.398	4.625	4.481	
Radiation type	Mo K α	Mo K α	Mo K	
$\mu\left(\mathrm{mm}^{-1}\right)$	12.55	19.44	16.75	
Crystal form, colour	Irregular fragment, col	ourless Large strongl colourless-	distorted octahedron, Dogt hite	thed-shaped, colourless
Crystal size (mm)	$0.08 \times 0.07 \times 0.06$	$0.10 \times 0.08 \times$	0.07 0.15	0.13×0.08
Data collection				
Diffractometer	NoniusKappaCCD	NoniusKappa	CD Noni	KappaCCD
Data collection method	φ and ω scans	φ and ω scan	φ and	ω scans
Absorption correction	Multi-scan (based on s related measuremen	s) \quadMulti-scan (betry- related me	sed on symmetry- Multi urements) rel	can (based on symmetryed measurements)

Table 2 (continued)

	$\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$	$\mathrm{CsAs}_{3} \mathrm{O}_{8}$	$\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$
$T_{\text {min }}$	0.433	0.247	0.188
$T_{\text {max }}$	0.520	0.343	0.348
No. of measured, independent and observed reflections	1933, 1020, 924	3021, 1540, 1433	4992, 2568, 2375
Criterion for observed reflections	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$
$R_{\text {int }}$	0.011	0.013	0.021
$\theta_{\text {max }}\left({ }^{\circ}\right)$	32.6	34.9	32.5
Refinement			
Refinement on	F^{2}	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.017, 0.041, 1.14	0.020, 0.054, 1.03	0.029, 0.073, 1.09
No. of reflections	102	1540	2568
No. of parameters	61	57	127
H -atom treatment	Refined independently	No H atoms present	Mixture of independent and constrained refinement
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.017 P)^{2}+0.9444 P\right], \\ & \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0294 P)^{2}+3.3231 P\right], \\ & \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0459 P)^{2}+0.211 P\right], \\ & \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$
$(\Delta / \sigma)_{\text {max }}$	<0.0001	<0.0001	0.001
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.04, -0.54	2.18, -2.13	1.58, -2.35
Extinction method	SHELXL97	SHELXL97	SHELXL97
Extinction coefficient	0.0034 (3)	0.0076 (3)	0.068 (2)

 1997a), DIAMOND (Brandenburg, 2005).
$\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ compound formed from mixtures of $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{Sc}_{2} \mathrm{O}_{3}\left[\right.$ or $\left.\mathrm{Cr}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}\right]$ and arsenic acid (volume ratio $c a$ 2:1:4). $\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ was also grown from a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and arsenic acid (volume ratio ca $1: 4$, yield ca 80%).
$\mathrm{CsAs}_{3} \mathrm{O}_{8}$ formed large white-to-colourless pseudo-octahedral crystals in a mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and arsenic acid (volume ratio ca 1:1:4). The compound was accompanied by large pale bluish pseudo-octahedral crystals of $\mathrm{CsFe}_{2^{-}}$ $\mathrm{As}\left(\mathrm{HAsO}_{4}\right)_{6}($ Schwendtner \& Kolitsch, 2007c), with a crystal structure derived from that of $\mathrm{RbFe}\left(\mathrm{HPO}_{4}\right)(\mathrm{Lii} \& \mathrm{Wu}, 1994)$. $\mathrm{CsAs}_{3} \mathrm{O}_{8}$ was also grown from a mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and arsenic acid (volume ratio ca $1: 3$, yield ca 70%). The material is hygroscopic and transforms in air within weeks into the novel compound $\mathrm{Cs}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)\left(\mathrm{H}_{3} \mathrm{AsO}_{4}\right)_{2}$ (Schwendtner \& Kolitsch, 2007d).

Colourless dogtooth-shaped to tabular (101) crystals of $\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ were grown from a mixture of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and arsenic acid (volume ratio ca 1:3, yield ca 95%).

2.2. X-ray diffraction experiments and crystal structure solution

Several crystals of each of the seven compounds were selected for single-crystal studies with a Nonius KappaCCD single-crystal four-circle diffractometer [Mo tube, graphite monochromator, CCD detector frame size: 621×576 pixels (binned mode)], equipped with a $300 \mu \mathrm{~m}$ diameter capillaryoptics collimator to provide increased resolution. A complete sphere of reciprocal space (φ and ω scans) was measured at room temperature for a suitable crystal of each compound (see Table 2 for details). The intensity data were processed with the Nonius program suite $D E N Z O-S M N$ (Otwinowski \& Minor, 1997) and corrected for Lorentz, polarization and background effects, and, by the multi-scan method (Otwinowski \& Minor, 1997; Otwinowski et al., 2003), for absorp-
tion. The crystal structures were solved with SHELXS97 (Sheldrick, 1997b) and subsequent Fourier and difference Fourier syntheses, followed by anisotropic full-matrix leastsquares refinements on F^{2} using SHELXL97 (Sheldrick, 1997a; Table 1). All H atoms could be detected and were successfully refined, in the cases of $\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}, \mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ and $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ with restraints on the $\mathrm{O}-\mathrm{H}$ bond distances [$\mathrm{O}-\mathrm{H}=0.90$ (2) \AA A using the SHELXL97 DFIX command].

The crystals were of generally good quality and showed no signs of twinning. The last step of refinement resulted in final residuals $R 1(F)$ of <0.029 for all seven compounds (Table 2). All the largest residual peaks (electron densities 2.18/ -2.13 e \AA^{-3}) in the final difference-Fourier map found for $\mathrm{CsAs}_{3} \mathrm{O}_{8}$ were close to the Cs positions, whereas the largest peaks for $\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ were close to O 1 and $\mathrm{As} 1 . \mathrm{KHAs}_{2} \mathrm{O}_{6}$ and $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ did not show any distinct electron densities $>|1| \mathrm{e}^{\AA^{-3}}$; those of $\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ and $\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$ were only slightly larger (Table 2). Mean bond lengths and angles, calculated bond valences based on published parameters (Brown \& Aldermatt, 1985) and distortion parameters of bond lengths (Brown \& Shannon, 1973) and bond angles (Robinson et al., 1971) for all As-centred polyhedra are presented in Table 3; hydrogen bonds are given in Table 4 and a detailed table of bond lengths and bond angles has been deposited as supplementary material. ${ }^{\mathbf{1}}$

3. Results and discussion

3.1. Crystal structure descriptions

All of the protonated new structure types are built up by the well known $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster (Fig. 1), which was first described

[^1]for $\mathrm{BaH}_{6} \mathrm{As}_{4} \mathrm{O}_{14}$ (Blum et al., 1977), or a derivative of that cluster, as is the case for $\mathrm{CsAs}_{3} \mathrm{O}_{8}$. The cluster consists of two edge-sharing AsO_{6} octahedra, the apices of both octahedra being connected on two sides via AsO_{4} tetrahedra. In the following structures these clusters are either isolated and only connected by hydrogen bonds and the M^{+}cations (as is the case for $\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$) or they form chains as in $\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$, isotypic $\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$ and $\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$. Layer structures are formed by $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ and $\mathrm{KHAs}_{2} \mathrm{O}_{6}$, whereas in $\mathrm{CsAs}_{3} \mathrm{O}_{8}$ the clusters are reduced and polymerize to form a microporous framework.
3.1.1. Structure of $\mathbf{L i H}_{2} \mathbf{A s}_{\mathbf{3}} \mathbf{O}_{\mathbf{9}}$. In $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ each $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster is corner-connected to four other clusters, thus forming a (101) layer (Fig. 2a). Additionally, the remaining unconnected two corners of the AsO_{6} octahedra are shared with doubly protonated AsO_{4} groups, which, as shown in Fig. 2(b), connect these layers via medium-strong to weak hydrogen bonds (Table 4). These $\mathrm{H}_{2} \mathrm{AsO}_{4}$ groups are also the main difference between this structure type and the related $\mathrm{KHAs}_{2} \mathrm{O}_{6}$ structure (see below), where the $\mathrm{H}_{2} \mathrm{AsO}_{4}$ groups are replaced by H atoms. $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ and stoichiometrically identical $\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ (see §3.1.6) are the only ones of the title compounds that contain hydrogen but no protonated AsO_{6} octahedra. The As- O distances are rather long for both tetrahedrally coordinated As atoms $(\langle\mathrm{As} 1-\mathrm{O}\rangle=1.694$, $\langle\mathrm{As} 2-\mathrm{O}\rangle=1.689 \AA$) compared with the average distance for inorganic compounds of $1.682 \AA$ (Baur, 1981). The longest As-O distances in both AsO_{4} groups involve the O atoms corner-shared with the AsO_{6} octahedra. This is explained by $\mathrm{As}^{\mathrm{V}}-\mathrm{As}^{\mathrm{V}}$ repulsion within the $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster, similar to the situation in diarsenates (long As- $\mathrm{O}_{\text {bridge }}$ distances). Still above average, but slightly shorter, are the As- OH distances, while the shortest distances are to the O atoms shared with the Li -centred polyhedra. The Li^{+}cations are in $[4+1]$ coordination $[\mathrm{Li}-\mathrm{O} 1.958$ (4)-2.072 (4) \AA; the fifth distance is much larger at 2.643 (4) \AA] and form edge-sharing dimers $\left(\mathrm{Li}_{2} \mathrm{O}_{6}\right)$, not uncommon for inorganic Li compounds (Wenger \& Armbruster, 1991). These dimers form - together with the $\mathrm{H}_{2} \mathrm{AsO}_{4}$ groups - a second layer sandwiched between two (101) octahedral-tetrahedral layers, and also connect the latter to a stable framework structure. The bond-valence sum (BVS) for Li is close to ideal with 0.97 v.u. (0.93 v.u without the fifth O). The BVSs of the protonated O atoms are 1.19/1.36 as expected (Table 3, bottom), whereas the relatively low BVS of O1 (1.69 v.u.) can be explained by its role as acceptor of the strongest hydrogen bond (Table 4). The somewhat overbonded O2 (2.12 v.u.) shares relatively short bonds with two As atoms.
3.1.2. Structure of $\mathrm{LiH}_{3} \mathbf{A s}_{2} \mathrm{O}_{7}$. In this novel structure type the $\mathrm{As}_{4} \mathrm{O}_{14}$ clusters are isolated, which is reflected by the high O / As ratio of 3.5. The Li^{+}cations are four-coordinated $[\mathrm{Li}-\mathrm{O}$ 1.985 (2)-1.993 (4) \AA; BVS 0.97 v.u.] and form $\mathrm{Li}_{2} \mathrm{O}_{6}$ dimeric units as in $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$. These dimers corner-connect adjacent clusters along the b and c axes, thus forming (100) layer-like units (Fig. 3a). Adjacent layer-like units are offset by $b / 2$, so that the HAsO_{4} tetrahedra of the clusters can form bonds to the edge-sharing corners of the $\mathrm{Li}_{2} \mathrm{O}_{6}$ dimeric units, thereby
forming a stable framework (Fig. 3a). Additionally, two different hydrogen bonds reinforce the framework (Figs. $3 a$ and b); the AsO_{6} octahedron is diprotonated and forms medium-strong hydrogen bonds, whereas the HAsO_{4} tetrahedron forms strong hydrogen bonds (Table 4). Interestingly, the shortest As-O distances of the $\mathrm{H}_{2} \mathrm{AsO}_{6}$ group are those to the protonated O with only 1.768 (1) \AA, and also the average As-O distance of this polyhedron is rather short with $1.820 \AA$ (mean ${ }^{[6]} \mathrm{As}-\mathrm{O}$ distance is $1.830 \AA$, see discussion in $\S 3.3$ for details). The $\mathrm{H}_{2} \mathrm{AsO}_{6}$ polyhedron shows a slightly stronger distortion than that in $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$. The most underbonded O atoms are the donors of the hydrogen bonds; the low BVS of O5 (1.68 v.u.) can be explained by its role as an acceptor of a very strong hydrogen bond.
3.1.3. Structure of $\mathrm{KHAs}_{2} \mathrm{O}_{6}$. This compound is isotypic to $\mathrm{NaHAs}_{2} \mathrm{O}_{6}$ (Nguyen Huy \& Jouini, 1978) and is built up by $\mathrm{As}_{4} \mathrm{O}_{14}$ clusters, which are corner-connected via their AsO_{4} groups to interrupted (100) sheets, as in $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ (cf. Figs. $2 a$ and $4 a$). However, the connectivity between these zigzag sheets is different ($c f$. Figs. $2 b$ and $4 b$); in $\mathrm{KHAs}_{2} \mathrm{O}_{6}$ the empty corners of both the AsO_{6} octahedra of the cluster form hydrogen bonds which connect adjacent sheets, the sevencoordinated K^{+}cations being located between two sheets, whereas in $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ additional AsO_{4} tetrahedra are sharing these corners and only these form the hydrogen bonds. The single hydrogen bond in $\mathrm{KHAs}_{2} \mathrm{O}_{6}$ is rather strong and is confirmed by the low BVS of the donor atom (O5, 1.22 v.u.). Again, the As- O distance to the protonated O atoms is the shortest one in the AsO_{6} octahedron. The As-O distances in the AsO_{4} group comprise one very short distance (involving the slightly underbonded O1 atom with 1.77 v.u., which is an acceptor of the hydrogen bond) and three nearly equally long bonds to the O atoms shared with the AsO_{6} octahedra. In the first description of this structure type (Nguyen Huy \& Jouini, 1978) the H atoms in $\mathrm{NaHAs}_{2} \mathrm{O}_{6}$ were not found, nor was the possible position of the H atom discussed. The mean bond length for the AsO_{4} tetrahedra is slightly larger in $\mathrm{NaHAs}_{2} \mathrm{O}_{6}$

Figure 1
The $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster, which is the predominant building unit in $\mathrm{AsO}_{6}-$ containing M^{+}arsenates.

Table 3
Mean distances (\AA) and angles (${ }^{\circ}$), bond-valence sums and distortion parameters of the seven new title compounds.
Bond-length distortion (Brown \& Shannon, 1973) for tetrahedra: $\Delta=\frac{1}{4} \sum_{i=1}^{4}\left[\left(R_{i}-\bar{R}\right) / \bar{R}\right]^{2}$; for octahedra: $\Delta=\frac{1}{6} \sum_{i=1}^{6}\left[\left(R_{i}-\bar{R}\right) / \bar{R}\right]^{2}$. Bond-angle distortion (Robinson et al., 1971) for tetrahedra: $\sigma^{2}=\sum_{i=1}^{6}\left(\theta_{i}-109.47^{\circ}\right)^{2} / 5$; for octahedra: $\sigma^{2}=\sum_{i=1}^{12}\left(\theta_{i}-90^{\circ}\right)^{2} / 11$.

	$\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$		$\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$		$\mathrm{KHAs}_{2} \mathrm{O}_{6}$		$\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$		$\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$		$\mathrm{CsAs}_{3} \mathrm{O}_{8}$		$\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$	
As1														
$\left\langle{ }^{[4]} \mathrm{As} 1-\mathrm{O}\right\rangle(\AA)$	1.694		1.69		1.690		1.690		1.69		1.687		1.692	
BVS As1 (v.u.)	4.90		4.90		4.94		4.93		4.91		4.96		4.93	
Distortion (Δ)	4.48 E		4.45		2.97 E		1.36 E		1.18		$6.05 \mathrm{E}-06$		5.92 E	
As2/3 \dagger														
$\left\langle{ }^{[4]} \mathrm{As} 2 / 3-\mathrm{O}\right\rangle(\mathrm{A})$	1.689												1.696	
BVS (v.u.)	4.95												4.87	
Distortion (Δ)	3.73 E												4.29 E	
As2/3 \dagger														
$\left.{ }^{[6]} \mathrm{As} 2 / 3-\mathrm{O}\right\rangle(\AA)$	1.822		1.82		1.828		1.831		1.83		1.835		1.824	
BVS (v.u.)	5.19		5.22		5.12		5.09		5.10		5.03		5.15	
Distortion (Δ)	1.38 E		4.74		4.84 E		7.84 E		7.42		$6.19 \mathrm{E}-04$		1.01 E	
As1														
$\left\langle\mathrm{O}-{ }^{[4]} \mathrm{As} 1-\mathrm{O}\right\rangle\left({ }^{\circ}\right)$	109.2		109.		109.3		109.		109.		109.41		109.3	
Distortion (σ^{2})	43.85		24.1		31.91		5.91		5.89		15.39		38.42	
As2/3 \dagger														
$\left\langle\mathrm{O}-{ }^{[4]} \mathrm{As} 2 / 3-\mathrm{O}\right\rangle\left({ }^{\circ}\right)$	109.1												109.3	
Distortion (σ^{2})	47.58												35.09	
As2/3 \dagger														
$\left\langle\mathrm{O}-{ }^{[6]} \mathrm{As} 2 / 3-\mathrm{O}\right\rangle\left({ }^{\circ}\right)$	90.02		90.0		90.03		89.98		90.0		90.12		90.02	
Distortion (σ^{2})	7.87		21.3		40.21		8.55		9.11		24.64		35.09	
Bond-valence sums for O atoms (v.u.)														
	O1	1.69	O1	1.92	O1	1.77	O1	2.07	$\mathrm{O}_{\mathrm{H}} 1$	1.48	$\mathrm{O}_{\mathrm{H} 1} 1$	1.44	O1	1.89
	O2	2.12	O2	1.93	O2	2.12	O2	2.01	O2	2.14	O2	2.09	$\mathrm{O}_{\mathrm{H}} 2$	1.29
	O3	1.96	$\mathrm{O}_{\mathrm{H}} 3$	1.14	O3	1.93	O3	1.87	O3	1.87	O3	1.87	O3	1.69
	O4	1.91	$\mathrm{O}_{\mathrm{H}} 4$	1.24	O4	2.03	O4	2.15	O4	2.03	O4	2.04	O4	2.05
	O5	1.92	O5	1.68	$\mathrm{O}_{\mathrm{H}} 5$	1.20	$\mathrm{O}_{\mathrm{H}} 5$	1.22	$\mathrm{O}_{\mathrm{H} 5}$	1.27			O5	1.86
	$\mathrm{O}_{\mathrm{H}} 6$	1.19			O6	1.81	O6	1.96	O6	1.83			O6	2.01
	$\mathrm{OH}_{\mathrm{H}} 7$	1.36											$\mathrm{O}_{\mathrm{H}} 7$	1.27
	O8	2.09											O8	1.95
	O9	1.78											O9	1.93

\dagger The second AsO_{4} polyhedron in $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ is numbered As 2 , whereas it is numbered As 3 in $\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$; the AsO_{6} polyhedra are numbered As2 in all compounds except $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$, where it is called As3.
than in $\mathrm{KHAs}_{2} \mathrm{O}_{6}(1.70$ versus $1.690 \AA)$, whereas the opposite is true for the AsO_{6} octahedra (1.82 versus $1.831 \AA$). $\mathrm{KHAs}_{2} \mathrm{O}_{6}$ clearly is a sheet structure, whereas the related $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ structure can also be regarded as a framework if the LiO_{4} tetrahedra are considered as part of the framework.

Figure 2
$\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$: (a) view along [100], documenting the connectivity within the (100) octahedral-tetrahedral layer; (b) view along [101], showing the sequence of octahedral-tetrahedral layers and layers containing $\mathrm{H}_{2} \mathrm{AsO}_{4}$ and $\mathrm{Li}_{2} \mathrm{O}_{6}$ dimers (Li^{+}cations shown in left part of figure).
3.1.4. Structures of $\mathrm{KH}_{3} \mathrm{As}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 2}}$ and $\mathrm{RbH}_{3} \mathrm{As}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 2}}$. In these two new compounds, representing a novel structure type, the sheet structure of $\mathrm{KHAs}_{2} \mathrm{O}_{6}$ is broken up into chains. The $\mathrm{As}_{4} \mathrm{O}_{14}$ clusters are corner-linked via the AsO_{4} tetrahedra to form infinite chains parallel to the a axis. All the empty corners of both AsO_{6} octahedra and AsO_{4} tetrahedra are protonated and involved in hydrogen bonds. The resulting network provides reinforcement along the b and c axes (Fig. 5a). Unlike $\mathrm{KHAs}_{2} \mathrm{O}_{6}$, where the hydrogen donor belongs to the AsO_{6} octahedron and the acceptor to AsO_{4}, here a medium-strong hydrogen bond exists between two AsO_{6} groups and a very strong, symmetry-restricted hydrogen bond involving a characteristically split half-occupied H position between two AsO_{4} groups [O1H2 . O1 2.453 (4)/2.458 (5) \AA for the Rb and K compounds, respectively]. The shortest As-O bonds

Table 4
Hydrogen bonds of the six new protonated M^{+}arsenates.

Compound	$D-\mathrm{H}$	$d(D-\mathrm{H})(\AA)$	$d(\mathrm{H} \cdots A)(\AA)$	$\angle D H A\left({ }^{\circ}\right)$	$d(D \cdots A)(\AA)$	A
$\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$	$\mathrm{O} 6-\mathrm{H} 1$	$0.877(19)$	$2.11(3)$	$157(4)$	$2.936(2)$	O 4
	$\mathrm{O} 7-\mathrm{H} 2 \dagger$	$0.86(4)$	$1.85(4)$	$161(3)$	$2.676(2)$	O 1
$\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$	$\mathrm{O} 4-\mathrm{H} 1 \dagger$	$0.74(3)$	$2.11(3)$	$174(3)$	$2.8410(19)$	O 3
	$\mathrm{O} 3-\mathrm{H} 2 \dagger$	$0.68(5)$	$1.87(5)$	$171(5)$	$2.552(2)$	O 5
$\mathrm{KHAs}_{2} \mathrm{O}_{6}$	$\mathrm{O} 5-\mathrm{H} 1 \dagger$	$0.77(3)$	$1.91(3)$	$167(3)$	$2.6669(18)$	O 1
$\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$	$\mathrm{O} 5-\mathrm{H} 1$	$0.885(14)$	$1.949(19)$	$164(4)$	$2.810(3)$	O 3
	$\mathrm{O} 1-\mathrm{H} 2$	$0.89(2)$	$1.58(2)$	$166(7)$	$2.458(5)$	O 1
$\mathrm{RbH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$	$\mathrm{O} 5-\mathrm{H} 1$	$0.852(19)$	$1.98(2)$	$169(4)$	$2.822(3)$	O 3
	$\mathrm{O} 1-\mathrm{H} 2$	$0.901(10)$	$1.58(3)$	$161(8)$	$2.453(4)$	O 1
$\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$	$\mathrm{O} 2-\mathrm{H} 1 \dagger$	$0.879(19)$	$1.70(2)$	$162(5)$	$2.551(4)$	O 3
	$\mathrm{O} 7-\mathrm{H} 2$	$0.87(6)$	$1.97(7)$	$157(6)$	$2.796(3)$	O 6

\dagger Not restrained
of the AsO_{4} and AsO_{6} polyhedra of both compounds involve the protonated O atom, whereas the longest bonds are to the bridging O atoms of the other arsenate groups. The K/ Rb atoms are located in (100) planes, separating the chains. They have a rather large, irregular coordination sphere comprising ten oxygen ligands. The average $\mathrm{Rb}-\mathrm{O}$ distance of $3.07 \AA$ is close to the expected value of $c a$ $3.03 \AA$ (Khan \& Baur, 1972) and only slightly longer than the corresponding distance of the K^{+}cation $(\langle\mathrm{K}-\mathrm{O}\rangle=2.99 \AA$). Owing to these slight differences in the mean bond lengths the BVS is rather large for the Rb atom (1.21 v.u.), but as expected for the K atom (1.01 v.u.).
3.1.5. Structure of $\mathrm{CsAs}_{3} \mathrm{O}_{\mathbf{8}}$. The structure of $\mathrm{CsAs}_{3} \mathrm{O}_{8}$ is the most unusual among the title compounds because it is a rather condensed framework structure. It can most easily be described as being built up by $\mathrm{As}_{3} \mathrm{O}_{12}$ rings (visualized as an $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster with one AsO_{4} tetrahedron missing). These rings share edges with AsO_{6} octahedra of two adjacent rings to form infinite zigzag AsO_{6} chains running parallel to [100] (Fig. 6a). The chains are firmly connected to each other by AsO_{4} tetrahedra (Figs. $6 b$ and c), thus forming a rather dense framework structure with the lowest O / As ratio (2.67) of all known M^{+}arsenates(V) containing arsenic in octahedral coordination. Nevertheless, it represents a microporous structure type with ten-coordinated Cs cations located at the intersections of channels parallel to [110] and [001] ($\langle\mathrm{Cs}-\mathrm{O}\rangle$ $=3.300 \AA$). As every AsO_{4} tetrahedron shares its corners with four AsO_{6} octahedra and each AsO_{6} octahedron shares edges with two other symmetry-equivalent AsO_{6} octahedra and corners with two different AsO_{4} tetrahedra, there is no room for hydrogen bonds. As expected for four identical ligand atoms, the As -O bond lengths of AsO_{4} are very similar and the bond-length distortion is also rather low, unlike all six other compounds where there is at least one very short and a few very long As-O bonds (see supplementary

Figure 4
$\mathrm{KHAs}_{2} \mathrm{O}_{6}$: (a) view along a and connectivity of $\mathrm{As}_{4} \mathrm{O}_{14}$ clusters to (100) sheets (cf. Fig. 2a); (b) view along \mathbf{c} and connection between sheets, with K atoms in voids (cf. Fig. 2b).
table). The mean ${ }^{[4]} \mathrm{As}-\mathrm{O}$ bond length ($1.687 \AA$) is still above the average $1.682 \AA$ (Baur, 1981), but considerably shorter than in the other compounds. The longest $\mathrm{As}-\mathrm{O}$ bond lengths in the AsO_{6} octahedra are the ones to O atoms shared with the AsO_{4} tetrahedra, as can be expected by the stronger influence of the As^{V} atom in this cation, compared with that in the AsO_{6} octahedra. The stoichiometry of this compound is so far unprecedented among the M^{+}arsenates discussed herein.
3.1.6. Structure of $\mathbf{A g H}_{\mathbf{2}} \mathbf{A s}_{\mathbf{3}} \mathbf{O}_{\mathbf{9}}$. This structure type is isotypic to that of $\mathrm{NaH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ (Driss, Jouini, Durif \& Aver-buch-Pouchot, 1988). Its sum formula is similar to $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$, but the structure types are not related. Both types are built up by $\mathrm{As}_{4} \mathrm{O}_{14}$ units, but where those are connected to layers in

Figure 5
$\mathrm{KH}_{3} \mathrm{As}_{4} \mathrm{O}_{12}$: (a) view parallel to infinite chains extending parallel to a, showing linkage between chains via hydrogen bonds (note the split H 2 position); (b) view along c, perpendicular to chains, showing the connectivity of the chains.

Figure 6
$\mathrm{CsAs}_{3} \mathrm{O}_{8}$: (a) view along \mathbf{c} showing zigzag AsO_{6} chains running parallel to \mathbf{a}; (b) view along [101] demonstrating connection between the chains via AsO_{4} tetrahedra; (c) view along [110] with Cs-filled microporous channels; (d) view along [001] with Cs-filled microporous channels.
$\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$, they are connected by two ${\mathrm{As} 1 \mathrm{O}_{4} \text { groups to }}^{2}$ infinite chains parallel to a (Figs. $7 a$ and b) in $\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$. The H atoms very firmly connect these chains in directions \mathbf{b} and \mathbf{c} through strong to medium-strong hydrogen bonds (Table 4). The Ag cation is six-coordinated as is the Na^{+}cation in the isotypic Na compound and the AgO_{6} polyhedron can be best described as a strongly distorted octahedron $(\Delta=0.0041$, Brown \& Shannon, 1973; $\sigma^{2}=228.2$, Robinson et al., 1971; mean $\mathrm{Ag}-\mathrm{O}=2.515 \AA$ compared with $2.435 \AA$ in the Na compound). The $\mathrm{As}-\mathrm{O}$ bond lengths in AsO_{4} tetrahedra are both longer (1.692 and $1.696 \AA$) than the literature values (Baur, 1981) and are longest for the tetrahedron of the $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster. This pattern is similar to the situation in the isotypic Na compound, where the differences between As1 and As3 are even more pronounced. As expected from the larger ionic radius of six-coordinated Ag^{+} compared with Na^{+}(Shannon, 1976), the cell volume of the new compound $\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ is larger than that of $\mathrm{NaH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$ (Table 1). Cell lengths b and c are elongated in the Ag compound, whereas the a cell length is slightly shorter than in the Na compound. This can be explained by the arrangement of the $\left[\mathrm{H}_{2} \mathrm{As}_{3} \mathrm{O}_{9}\right]^{-}$chains in the structure: These chains run parallel to a; this cell parameter is therefore hardly influenced by the size of the M^{+}cation.

3.2. Comparison and discussion of all 15 structure types containing As in octahedral coordination

Comparing the seven novel compounds to the eight other known compounds containing M^{+} cations and arsenic(V) in octahedral coordination (Table 1) demonstrates that six different building units are present; the most prevalent is the $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster, which is encountered in 10 of the 15 compounds. In these structure types, every AsO_{6} octahedron shares only one edge with another AsO_{6} octahedron. The connectivity between the $\mathrm{As}_{4} \mathrm{O}_{14}$ units is the main difference in these ten compounds. $\mathrm{Ag}_{4} \mathrm{H}_{4} \mathrm{As}_{4} \mathrm{O}_{14}$ (Boudjada \& Averbuch-Pouchot, 1984), $\mathrm{Na}_{3} \mathrm{H}_{5} \mathrm{As}_{4} \mathrm{O}_{14}$ (Driss \& Jouini, 1989b) and the novel $\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}$ all represent structures with
isolated $\mathrm{As}_{4} \mathrm{O}_{14}$ groups. Connectivity between the groups is provided through the M^{+}cations and hydrogen bonds. Their structures and stoichiometries are different. For every $\mathrm{As}_{4} \mathrm{O}_{14}$ unit the ratio of $\mathrm{H}: M^{+}$differs in these three compounds and is largest (3) in the Li compound and smallest (1) in the Ag compound. The influence of the hydrogen bonds reinforcing the structure is therefore more pronounced in the Li compound, whereas the M^{+}cations play a more important part in the Ag compound. $\mathrm{Na}_{3} \mathrm{H}_{5} \mathrm{As}_{4} \mathrm{O}_{14}$ lies somewhere inbetween. The two structure types $M^{+} \mathrm{H}_{2} \mathrm{As}_{3} \mathrm{O}_{9}\left(M^{+}=\mathrm{Na}, \mathrm{Ag}\right)$ and $M^{+} \mathrm{H}_{3} \mathrm{As}_{4} \mathrm{O}_{14}\left(M^{+}=\mathrm{K}, \mathrm{Rb}\right)$ are both chain structures; the $\mathrm{As}_{4} \mathrm{O}_{14}$ groups are linked to infinite chains via the AsO_{4} groups of the cluster. The difference arises through the connectivity of the chains, which is directly through hydrogen bonds in the $M^{+} \mathrm{H}_{3} \mathrm{As}_{4} \mathrm{O}_{14}$ structure, whereas additional AsO_{4} groups attached to the cluster connect adjacent chains through hydrogen bonds in the $M^{+} \mathrm{H}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$-type structure ($M^{+}=\mathrm{Na}$, $\mathrm{Ag})$. This fact is also the main difference in the two sheetstructure types $M^{+} \mathrm{HAs}_{2} \mathrm{O}_{6}\left(M^{+}=\mathrm{Na}, \mathrm{K}\right)$ and $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$, where the $\mathrm{As}_{4} \mathrm{O}_{14}$ groups link to sheets through the AsO_{4} groups of the cluster. However, connectivity between adjacent sheets is only achieved through hydrogen bonds in the $M^{+} \mathrm{HAs}_{2} \mathrm{O}_{6}$ type and via an additional AsO_{4} group, that forms hydrogen bonds, in the $\mathrm{LiH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$-type structure.

The following five structure types do not contain $\mathrm{As}_{4} \mathrm{O}_{14}$ groups. The building unit of $\mathrm{CsAs}_{3} \mathrm{O}_{8}$ consists of infinite zigzag chains of edge-sharing AsO_{6} octahedra; therefore, every AsO_{6} shares two edges with two more AsO_{6} octahedra. This is taken a step further in the recently described, oxygen-deficient $\mathrm{Na}_{7} \mathrm{As}_{11} \mathrm{O}_{31}$ (Guesmi et al., 2006), where some of the octahedra share edges with two neighbouring AsO_{6} groups and the others have three common edges with other AsO_{6} groups. $\mathrm{Na}_{7} \mathrm{As}_{11} \mathrm{O}_{31}$ can therefore be considered the missing link between $\mathrm{CsAs}_{3} \mathrm{O}_{8}$ and LiAsO_{3} (Driss \& Jouini, 1989a). In the latter the structure is built up by sheets of edge-sharing AsO_{6} octahedra, and each AsO_{6} group shares edges with three neighbouring AsO_{6} groups. This structure type is also the only one based solely on octahedrally coordinated arsenic. With respect to edge connections of the AsO_{6} unit the structure of

$\mathrm{AgH}_{2} \mathrm{As}_{3} \mathrm{O}_{9}$: (a) view along [100], documenting the existence of chains, connected via hydrogen bonds and octahedrally coordinated Ag^{+}cations, running parallel to $\mathbf{a} ;(b)$ view along [010], showing the chains consisting of $\mathrm{As}_{4} \mathrm{O}_{14}$ groups connected via the ${\mathrm{As} 1 \mathrm{O}_{4} \text { groups. The chains are connected via hydrogen }}^{\text {g }}$ bonds of $\mathrm{As} 3 \mathrm{O}_{4}$ groups. Both figures contain an additional single polyhedral representation of the AgO_{6} polyhedron.
AgAsO_{3} (Curda et al., 2004) is probably the most unusual, as it represents the only type based on infinite chains of corner(instead of edge-) sharing AsO_{6} octahedra, which are linked by AsO_{4} tetrahedra, similar to the $\mathrm{As}_{4} \mathrm{O}_{14}$ clusters. The structure type of $\mathrm{Na}_{2} \mathrm{As}_{4} \mathrm{O}_{11}$ (Driss, Jouini \& Omezzine, 1988) can be seen as the link between the AgAsO_{3} structure and those structures based solely on edge-sharing AsO_{6} polyhedra. It consists of two edge-sharing AsO_{6} octahedra which are linked through a common corner to infinite chains. These chains are connected by AsO_{4} tetrahedra to a framework structure.

The chemical formula of the M^{+}arsenates gives, analogous to silicates, some indication about the polymerization of the $\mathrm{As}_{4} \mathrm{O}_{14}$ cluster units. The O / As ratio is highest for the isolated clusters (3.5), medium for chain- and layer-structures (3) and lowest for framework structures (<3), as expected. The same applies for the $\mathrm{H} /$ As ratio, which is highest in structure types with isolated As-based clusters and, with increasing polymerization, decreases down to zero for the framework structures (e.g. $\mathrm{CsAs}_{3} \mathrm{O}_{8}$). The oxygen-deficient $\mathrm{Na}_{7} \mathrm{As}_{11} \mathrm{O}_{31}$ is the only type that does not completely obey this rule.

Unlike other protonated arsenates, where As-OH distances are usually longer than As-O distances ($\langle\mathrm{As}-\mathrm{OH}\rangle$ $=1.731 \AA$; Ferraris \& Ivaldi, 1984), the exact opposite is encountered in the present structure types. The strong influence of the As^{V} atom with its strong covalent bonds results in a competition for the shared O atoms. This can be seen very easily in all protonated AsO_{4} tetrahedra, where the $\mathrm{As}-\mathrm{OH}$ distances are usually a lot shorter than average, while the bonds between As atoms and O atoms shared with other As atoms are significantly longer, as expected from As-As repulsion (see supplementary table). It would be expected that this influence is stronger if AsO_{4} tetrahedra (instead of AsO_{6} octahedra) are involved as ligands and indeed this is very clearly the case as shown in $\mathrm{CsAs}_{3} \mathrm{O}_{8}$. The average As-O bond lengths of all AsO_{4} tetrahedra in these arsenates are above the average value of $1.682 \AA$ (Baur, 1981) and range between 1.687 and $1.696 \AA$. It is interesting to note that a rather large average As- O distance occurs in the Li compounds, whereas the smallest average distance can be observed in the Cs compound. Exactly the opposite is true for the AsO_{6} octahedra, where the average As-O distances range between 1.821 $\left(\mathrm{LiH}_{3} \mathrm{As}_{2} \mathrm{O}_{7}\right)$ and $1.835 \AA$ $\left(\mathrm{CsAs}_{3} \mathrm{O}_{8}\right)$. This can at least partly be explained by the different ligands. In the case of Cs the only slightly distorted AsO_{4} tetrahedron leads to a smaller average bond length, in agreement with the distortion theorem (Brown \& Shannon, 1973; Brown, 1981); on the other hand, the linkage of the AsO_{6} octahedra with six different As atoms does not considerably
change its distortion values, but leads to an increase of the mean bond length through the above described influences of the As^{V} cation ($\mathrm{As}-\mathrm{As}$ repulsion). For unknown reasons not a single one of the $15\left(\mathrm{NH}_{4}\right)$ arsenates in the ICSD database contains arsenic in octahedral coordination and our studies of this system have not yielded any new $\mathrm{NH}_{4}{ }^{[6]}$ As compounds so far.

3.3. Bond-length distribution in AsO_{6} octahedra

An analysis of all $\mathrm{As}-\mathrm{O}$ bond lengths in AsO_{6}-containing arsenates available in the ICSD was conducted. Structures fulfilling the following requirements were considered: refined structure, conventional R factor <0.072, coordination spheres comprise exactly six O atoms, no partial substitution of the As or O atoms. All in all, only $24 \mathrm{AsO}_{6}$ polyhedra belonging to 23 different compounds in the ICSD database meet these conditions. Together with the seven new compounds and the recently described $\mathrm{Na}_{7} \mathrm{As}_{11} \mathrm{O}_{31}$ (Guesmi et al., 2006), $33 \mathrm{AsO}_{6}$ octahedra of 31 compounds (four of these have R values >5) fulfil the requirements and were used for the analysis. It is worth noting that there are more than $900 \mathrm{AsO}_{4}$ polyhedra that meet similar requirements $-\mathrm{AsO}_{6}$ polyhedra therefore occur only in less than 3% of all arsenates (Schwendtner, 2007). Besides the $15 M^{+}$arsenate compounds listed in Table 1 the following compounds were used: $\mathrm{BaH}_{6} \mathrm{As}_{4} \mathrm{O}_{14}$ (Blum et al., 1977); $\mathrm{Mg}_{8.5}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{6}\right) \mathrm{O}_{2}$ (Bless \& Kostiner, 1973); $\mathrm{Ni}_{8.5}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{6}\right) \mathrm{O}_{2} \quad$ (Fleet \& Barbier, 1989); $\mathrm{K}_{7}\left(\mathrm{AsV}_{14} \mathrm{O}_{40}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}$ (Mueller et al., 1991); $\mathrm{Co}_{5}\left(\mathrm{AsVO}_{10}\right)$ (Osterloh \& Müller-Buschbaum, 1994); $\mathrm{Ni}\left(\mathrm{AsO}_{3}\right)_{2}$, $\mathrm{Co}\left(\mathrm{AsO}_{3}\right)_{2}$ and $\mathrm{Mn}\left(\mathrm{AsO}_{3}\right)_{2}$ (Nakua \& Greedan, 1995); $\mathrm{Pb}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)$ and $\mathrm{Ca}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)$ (Losilla et al., 1995); $\mathrm{Cd}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)$ (Weil, 2001); $\mathrm{Hg}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)$ (Mormann \& Jeitschko, 2000); $\mathrm{Hg}_{2}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)$ and $\mathrm{Hg}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)$ (Weil, 2000); $\mathrm{As}_{2} \mathrm{O}_{5}$ (Jansen, 1978); AsPO_{5} (Jansen et al., 1992). The As-O distances in the structures available in the ICSD were directly calculated using ICSD software; only $\mathrm{Na}_{2} \mathrm{As}_{4} \mathrm{O}_{11}$ (Driss, Jouini \& Omezzine, 1988) showed inconsistencies. The bond lengths in the paper differ considerably from that of the ICSD, which is astonishing since the atomic coordinates are identical in both instances (obviously there must be some error in the atomic coordinates given in the paper) - therefore the distances given in the paper were used for analysis.

The mean As-O distance in these 33 polyhedra is 1.830 (2) \AA. The distances range between 1.736 and $1.918 \AA$ for individual As-O distances and from 1.811 to $1.857 \AA$ for average distances of the 33 individual polyhedra. This is somewhat shorter than expected as it gives a mean BVS of 5.08 (2) v.u. for all used AsO_{6} octahedra. A thorough discussion of all AsO_{4} and AsO_{6} polyhedra in inorganic arsenate compounds will be published separately (Schwendtner, 2007).

4. Conclusions

AsO_{6} is a very uncommon coordination polyhedron in As^{V} compounds, but compared with other As^{V}-bearing compounds
it is rather common among M^{+}arsenates and to a lesser extent among M^{2+} arsenates.

More than 20% of all AsO_{6}-bearing compounds ($R<0.08$) are described in this paper for the first time. All of them were synthesized under mild hydrothermal conditions without added water (basically from a melt of arsenic acid). All the compounds listed in Table 1 were also grown by relatively mild conditions between $773 \mathrm{~K}\left(\mathrm{AgAsO}_{3}\right.$; Curda et al., 2004) and room temperature $\left(\mathrm{Ag}_{4} \mathrm{H}_{4} \mathrm{AsO}_{14}\right.$; Boudjada \& AverbuchPouchot, 1984). As with the new compounds the absence of $\mathrm{H}_{2} \mathrm{O}$ (Curda et al., 2004) was noted to be crucial. This might suggest that the more prevalent high-temperature solid-state reactions or hydrothermal conditions containing $\mathrm{H}_{2} \mathrm{O}$ are less suited for the growth of AsO_{6}-bearing compounds, although high-temperature synthesis (chemical transport reaction at 993 K) has been successful in the case of $\mathrm{Cd}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)$ (Weil, 2001) for example. In general, high coordination numbers seem to be less common at higher temperatures. Therefore, the number of octahedrally coordinated As atoms is likely to increase significantly if the following two conditions are adhered to during synthesis: mild temperatures and high concentration of arsenic (no dilution with $\mathrm{H}_{2} \mathrm{O}$).

Financial support by a DOC FFORTE fellowship of the Austrian Academy of Sciences (ÖAW) to K. Schwendtner is gratefully acknowledged. We thank one of two anonymous referees and Co-editor van Smaalen for very helpful comments.

References

Baran, E. J., Schwendtner, K. \& Kolitsch, U. (2006a). J. Raman Spectrosc. 37, 1335-1340.
Baran, E. J., Schwendtner, K. \& Kolitsch, U. (2006b). J. Raman Spectrosc. 37, 1453-1455.
Baur, W. H. (1981). Interatomic Distance Predictions for Computer Simulation of Crystal Structures. New York: Academic Press.
Bless, P. W. \& Kostiner, E. (1973). J. Solid State Chem. 6, 80-85.
Blum, D., Durif, A. \& Guitel, J. C. (1977). Acta Cryst. B33, 3222-3224.
Boudjada, A. \& Averbuch-Pouchot, M. T. (1984). J. Solid State Chem. 51, 76-82.
Brandenburg, K. (2005). DIAMOND, Version 3.1a. Bonn, Germany. Brown, I. D. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe \& A. Navrotsky, Vol. II, pp. 1-30. New York: Academic Press.
Brown, I. D. \& Aldermatt, D. (1985). Acta Cryst. B41, 244-247.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Curda, J., Peters, E. M. \& Jansen, M. (2004). Z. Anorg. Allg. Chem. 630, 491-494.
Driss, A. \& Jouini, T. (1989a). J. Solid State Chem. 78, 126-129.
Driss, A. \& Jouini, T. (1989b). J. Solid State Chem. 78, 130-135.
Driss, A., Jouini, T., Durif, A. \& Averbuch-Pouchot, M. T. (1988). Acta Cryst. C44, 1507-1510.
Driss, A., Jouini, T. \& Omezzine, M. (1988). Acta Cryst. C44, 788-791.
Ferraris, G. \& Ivaldi, G. (1984). Acta Cryst. B40, 1-6.
Fleet, M. E. \& Barbier, J. (1989). Acta Cryst. B45, 201-205.
Guesmi, A., Nespolo, M. \& Driss, A. (2006). J. Solid State Chem. 179, 2433-2438.
Jansen, M. (1978). Z. Anorg. Allg. Chem. 441, 5-12.
Jansen, M., Begemann, B. \& Geb, J. (1992). Z. Anorg. Allg. Chem. 610, 139-144.
Khan, A. A. \& Baur, W. H. (1972). Acta Cryst. B28, 683-693.

Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.
Kolitsch, U. \& Schwendtner, K. (2004). Z. Kristallogr. New Cryst. Struct. 219, 347-348.
Kolitsch, U. \& Schwendtner, K. (2005). Acta Cryst. C61, i86-i98.
Lii, K.-H. \& Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.
Losilla, E. R., Aranda, M. A. G., Ramirez, F. J. \& Bruque, S. (1995). J. Phys. Chem. A, 99, 12975-12979.
Mormann, T. J. \& Jeitschko, W. (2000). Z. Kristallogr. New Cryst. Struct. 215, 471-472.
Mueller, A., Doering, J., Ishaque Khan, M. \& Wittneben, V. (1991). Angew. Chem. 103, 203-205.
Nakua, A. M. \& Greedan, J. E. (1995). J. Solid State Chem. 118, 402411.

Nguyen Huy, D. \& Jouini, T. (1978). Acta Cryst. B34, 3727-3729.
Nonius, BV (2002). COLLECT. Nonius BV, Delft, The Netherlands.
Osterloh, D. \& Müller-Buschbaum, H. (1994). Z. Anorg. Allg. Chem. 620, 319-322.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567570.

Schwendtner, K. (2006). J. Alloys Compd, 421, 57-63.
Schwendtner, K. (2007). In preparation.
Schwendtner, K. \& Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.
Schwendtner, K. \& Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.
Schwendtner, K. \& Kolitsch, U. (2005a). Acta Cryst. C61, i90-i93.

Schwendtner, K. \& Kolitsch, U. (2005b). Mitt. Österr. Mineral. Ges. 151, 109.
Schwendtner, K. \& Kolitsch, U. (2005c). Mitt. Österr. Mineral. Ges. 151, 110.
Schwendtner, K. \& Kolitsch, U. (2007a). Acta Cryst. C63, i17i20.
Schwendtner, K. \& Kolitsch, U. (2007b). Eur. J. Mineral. Accepted for publication.
Schwendtner, K. \& Kolitsch, U. (2007c). To be submitted.
Schwendtner, K. \& Kolitsch, U. (2007d). In preparation.
Schwendtner, K., Kolitsch, U. \& Tillmanns, E. (2006a). 15th Slovenian-Croatian Crystallographic Meeting, p. 36. Jezersko, Slovenia.
Schwendtner, K., Kolitsch, U. \& Tillmanns, E. (2006b). 19th General Meeting of the International Mineralogical Association, p. 90387. Kobe, Japan.
Schwendtner, K., Kolitsch, U. \& Tillmanns, E. (2006c). Z. Kristallogr. Suppl. 24, 119.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany.
Weil, M. (2000). Z. Naturforsch. Teil B, 55, 699-706.
Weil, M. (2001). Acta Cryst. E57, i22-i23.
Wenger, M. \& Armbruster, T. (1991). Eur. J. Mineral. 3, 387399.

[^0]: (C) 2007 International Union of Crystallography Printed in Singapore - all rights reserved

[^1]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: SN5044). Services for accessing these data are described at the back of the journal.

